
MATHEMATICS OF COMPUTATION
VOLUME 56, NUMBER 194
APRIL 1991, PAGES 859-865

AMICABLE PAIRS OF THE FORM (i, 1)

PATRICK COSTELLO

ABSTRACT. A method is given for finding amicable pairs of a certain type. When
implemented, thirteen new amicable pairs were discovered. Using methods for
finding new pairs from known pairs, the thirteen new pairs generated 64 other
new pairs.

1. INTRODUCTION

An amicable pair is a pair of distinct positive integers (a, m) where each
integer is the sum of the proper divisors of the other. If we let a(x) denote
the sum of all divisors of x, then saying that (a, m) is an amicable pair is
equivalent to saying a(a) = a(m) = a + m.

In the 1700's Leonhard Euler made a systematic study of many of the forms
that amicable pairs have. He developed several methods for finding pairs and
used his methods to discover 59 amicable pairs [3]. One particular form that
Euler discovered was the following:

(es, ep),
where s is the product of distinct primes not dividing the common factor e
and p is a single prime not dividing es. Recently, pairs of this form have been
labelled as type (i, 1), where i is the number of primes involved in s and 1
refers to the fact that p is a single prime [8]. It is not difficult to see that i
must in fact be greater than 1. A good question is, how big can i get?

The only pairs known prior to Euler were three (2,1) pairs:

2 2
(220, 284) = (2 5. 15 1 , 2 .71) (Pythagoras),

(17296, 18416) =(24 23*47, 2 .1151) (Fermat),

(9363584, 9437056) = (2 .191 . 383, 2 *.73727) (Descartes).

Among Euler's pairs were thirteen (2, 1) pairs, including the first known odd
pairs. In 1946 Edward Escott [4] produced a list of 219 new pairs that contained
seven (3, 1) pairs. In 1968 Elvin Lee [5] published the list of all known pairs
to that point, including six (4, 1) pairs that he discovered. In 1982 Herman te
Riele [7] found the first (5, 1) pair.

Received September 6, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 1 lA25.
Key words and phrases. Amicable pair.

(D 1991 American Mathematical Society
0025-5718/91 $1.00 + $.25 per page

859

860 PATRICK COSTELLO

It is the intent of this paper to show one method for discovering pairs of the
type (i, 1) and to list some results obtained through a computer implementa-
tion of this method.

2. THE ALGORITHM

Suppose we are searching for an amicable pair of the form (es, ep), where
p is a prime, s is a product of at least two distinct primes, p does not divide
s, and p and s are relatively prime to e. Since a is a multiplicative function,
the condition that a (es) = a(ep) implies that av(s) = av(p) = p + 1. Hence,
v(s) - 1 must be prime. The condition that o(es) = es + ep implies that

a(e) _ s+p _ s+o(s)-l
e a(s) v(s)

These observations lead to the following two-step algorithm:

Step 1. Choose a range of s-values.
For each s

If s is not prime then
Calculate a(s)
If v(s) - 1 is prime then
Save s and (s + o(s) - 1)/a(s) in a list

Step 2. Choose a range of e-values.
For each e

Calculate o(e)/e
Search the list created in Step 1 for a match
If c(e)/e = (s + a(s) - 1)/a(s) then

If (e and s are relatively prime) and
(e and v(s) - 1 are relatively prime) then
Print that es, e(a(s) - 1) is an amicable pair.

Let us see how this algorithm works on a small example. In Step 1 choose s
to be odd values ranging from 9 to 99. (See the beginning of ?4 for a reason to
choose just odd values.) The list of s- and (s + v(s) - 1)/a(s)-values to save is:
15, 19/12; 21, 13/8; 33, 5/3; 35, 41/24; 51, 61/36; 55,7/4; 57, 17/10;
63, 83/52; 65,37/21; 85, 16/9; 93, 55/32. When e = 4 in Step 2, we
would search the list for a(4)/4 = 7/4, which corresponds to s = 55. Since
4 and 55 are relatively prime, and 4 and 71 are relatively prime, we get the
Pythagorean pair (220, 284). When e = 819 in Step 2, we get the Euler pair
(3 2.7 13.5 a17,32 .7 a13. 107).

Technically, this algorithm will find more than just (i, 1) pairs because s
was not restricted to be a product of distinct primes. For example, 63 = 32 . 7
was an s-value that got put into the list, but 63 is not the product of distinct
primes. If a pair (e * 63, e * 103) were to be discovered, it would be labelled an
irregular or exotic pair. Such a pair would be marked type X. There are very
few known exotic pairs that would be produced from this algorithm, but they

AMICABLE PAIRS OF THE FORM (i, 1) 861

should not be discounted altogether. If s-values in Step 1 ranged from 5 1 109
9 2 3 to 6 . 109, we would save s = 17 * 59* 315461. Letting e = 2 . 37 in Step 2,

we would obtain the known exotic pair
3 2 3 (2 *37 *17 *59 - 315461, 2 .37 . 5810810039).

3. COMPUTATIONAL DETAILS

This algorithm requires that three functions be readily available. First, one
needs a function that tests if the input to the function is prime or not. If
the numbers to be tested for primality are not extremely large, a sophisticated
primality test is not really necessary. Trial division by 2, 3, and every odd
number after 3 until a divisor is found or the square root of the input is exceeded
would be a suitable implementation of this function.

The second function needed is one to calculate the sum of all the divisors
of the input. Suppose x is the input. A simple way to compute a(x) is to
initialize s to be 0 and for each divisor d between 1 and v/xt to increment s
by d + x/d (except when d = +/i). Since this method requires +/xi tests for
division for every input x, and since the algorithm calls for submitting many
values to this function, one might want a more efficient implementation.

The following method is a more efficient method for computing a(x) that
takes advantage of the multiplicative nature of a, i.e., if x = p apa2 ... par,

where the pi are distinct primes, then

a(x) =
a(plI)a(pr)

... cr(pAr)

Initialize s to be 1. Do trial division of x by 2, 3, and odd numbers after 3.
When a prime divisor p is found, repeatedly divide x by p to determine the
exact power of p that divides x. At the same time sum up the powers of p

0 including p . This can be accomplished with the following process:

powersum 1

power +- 1
while p divides x do

power + power * p
powersum 4- powersum+power
X 4- X/p

endloop

When the loop is exited, powersum holds the value .(pa), where a is the exact
power of p that divides x . Multiply this onto the variable s . Since x has been
reduced by dividing out pa, the next divisor to be found in the trial divisions
will be a prime. When x becomes 1 or the trial divisor becomes greater than

x, we exit the function. In the case that x becomes 1, a(x) is in s. In the
case that the trial divisor is greater than x, a(x) is s times (x + 1) .

862 PATRICK COSTELLO

As an example of how efficient this implementation for calculating a(x)
is, consider an input of x = 378125. Do trial divisions by 2, 3, and 5 and
discover that 5 is a divisor. One stays in the loop described above five times
for p = 5 since 55 divides x. When the loop is exited, s = powersum =
1 + 5 2+ 53 + 54 + 55 = 3906 and x = 121. Do trial division by 7, 9, and
11 and discover that 11 is a divisor. One stays in the loop described above two
times for p = 11 and upon leaving, s = 3906 * (+ 1+1 2) = 519498. Since
x has become 1, one quits. Note that the last trial division done this way is by
11 versus doing trial divisions (as suggested in the simple implementation) by
all integers less than vfx = 614.9.

The third function the main algorithm needs is a function to compute the
greatest common divisor of two integers. Step 2 requires this to determine when
two numbers are relatively prime. This function is most efficiently implemented
using the Euclidean Algorithm [6].

One can separate the two steps of the main algorithm into two separate com-
puter programs. The program that implements Step 1 should save the list of s-
and (s + a(s) - 1)/a(s)-values in a data file. This allows for various ranges of
e-values to be compared with a single range of s-values.

Because of the internal computer inaccuracies involved in real number com-
parisons of the form "if a(e)/e = listvalue then... ", it is advantageous to save
the fractions (s + a(s) - 1)/a(s) as a pair of integers representing the numera-
tor and denominator. We use the greatest common divisor function to find the
gcd of s + a(s) - 1 and a(s), say g. Then we actually save the integer pair
((s+a(s) - 1)/g, a(s)/g). In the program that implements Step 2, we similarly
reduce a(e)/e to its reduced form, say N/M, and search the data file saved in
Step 1 for a match with the integer pair (N, M) . In the case of a match, note
that since a(s), is not really in the data file, it must be recomputed in order to
test if e and a(s) - 1 are relatively prime.

It turns out that the data file saved in Step 1 is a large file for any reasonable
range of s-values. Consequently, doing a linear search of the data file in Step
2 for each e-value would make the algorithm quite slow. One solution to this
problem is the following idea. At the beginning of the Step 2 program read in
the data file saved by Step 1 and store the values in a table by applying a hash
function to the numerator and denominator pairs. Then as one goes through
the e-values, a quick check for a match can be done by applying the same hash
function to the numerator and denominator of the reduced form of a(e)/e.

4. RESTRICTIONS AND RESULTS

Restricting s-values in Step 1 to odd integers is based on the conjecture that
there are no odd-even amicable pairs. (It has been shown that there are no
odd-even (2,1) pairs [2].) For if s is even and a(s) - 1 is an odd prime, and
e and s are relatively prime, then e must be odd and so (es, e(a(s) - 1)) is
an odd-even pair.

AMICABLE PAIRS OF THE FORM (i, 1) 863

A program was written in Pascal to implement Step 1 and run on a VAX
11/785 minicomputer with all odd s-values ranging from 9 to 105. While not
requiring much computer time, the program used up a lot of disk space to store
the list of s- and (s + a(s) - 1)/a(s)-values. Just within this particular range
there are 10360 different s-values to save. In order to discover new amicable
pairs one needs to find es-values greater than 10 because all amicable pairs
with smaller integer less than 1010 are known [8]. Consequently, we wanted to
let s-values get fairly large (at least to 107), but file space limitations (as well as
main memory limits on the size of the hash table in Step 2) prohibit saving all
s-values less than 107. It was decided to save only the s-values less than 107
that contained a numerator <50000 when (s + a(s) - 1)/a(s) was reduced.

It took approximately 16 hours of CPU time on the VAX to create the data
file that contains all odd s-values satisfying these restrictions.

A second program was written in Pascal to implement Step 2 and run piece-
meal on e-values ranging from 4 to 5. 107. The program utilized the idea of
applying a hash function to each numerator-denominator pair from the data
file of Step 1 and storing s and the pair in a table. The program also checks
for the possibility of several s-values having the same numerator-denominator
pair when a match with a(e)/e is found. For example, when s is 205, 25705,
and 35905, one gets the numerator-denominator pair (38, 21). Then e = 5733
actually matches with three s-values and one obtains three different amicable
pairs.

This second program was very fast when the range of e-values was small,
but slowed down considerably on larger values. To do just the final range of
e-values chosen, 4.5. 107 < e < 5* 107, the program required nearly 14 hours of
CPU time on the VAX. While 49 previously known pairs were obtained by this
second program, twelve new (3,1) pairs and one new (4,1) pair were discovered.
Their factorizations are listed in Table 1. Notice that pairs 7 and 9 and pairs
10 and 11 demonstrate the fact that several different e-values can also match
up with a single s-value.

In addition, Table 1 lists the number of "daughter" pairs generated by each
pair. These are new amicable pairs that are found by applying a few clever tricks
to a known pair and arriving at new pairs that have much in common with the
known pair. 60 of the daughter pairs were generated using the ideas described
in [9]. After sending the "mother" and "daughter" pairs to H. te Riele, he was
able to find the additional four "daughter" pairs using some of his breeding
programs.

Pairs 5, 6, and 12 also generate Thabit rules as described by W. Borho in [1].
This is an additional method for generating new amicable pairs from known
pairs that depends heavily on primality testing of large numbers. When H. te
Riele checked the Thabit rules by testing primality of all terms less than 10100,
he found that no new pairs were generated .

864 PATRICK COSTELLO

TABLE 1
New amicable pairs of type (i, 1)

number of
type pairs daughter pairs

2 (3, 1) 3*5 *11 31*7 67*2749 1
2 3 5 * 11 * 31 * 1495999

34 5 113 41 * 431 439 13
34 5.113 . 7983359

32 2 3 .5 .31 *17 29*61 3
32 2 3 .5 .31 *33479
6 36 *5 13' 17* 149* 1637 1

36 *5 *13 4422599
2 3 *5 *13 * 463 * 11 * 19 * 6481 1
2 3. *5 13 X 463 * 1555679

3.5 * 13 - 199 * 17 - 269 - 397 17
22 3 .5 * 13 * 199 * 1934279

4 2 3.*7d11 *23*43 53 919 1
4 2 34 *711 *23 * 2185919
4 3.*5 11*503 41 59 2011 5
4 34 *5* 11 503 * 5070239

3.7 * 13 23 43 53 919 1
3.7 * 13 * 23 * 2185919

33 *5 19 * 37 - 41 ' 73 - 83 * 163 6
33 .5 19 * 37 - 41 - 1019423

32 *7*13 19*37 41 73 83.163 6
32 *7 13 * 19 * 37 - 41 - 1019423

3 . 5 7 * 419 * 11 * 17 * 11731 4
3 5 *7 *7419 * 2534111

(4,1) 3.5 113 7 17 47 1129 5
34*5 113 7810559

5. CONCLUSION AND FUTURE WORK

The nice thing about this approach to discovering new amicable pairs is that
new pairs can be discovered with single-precision arithmetic on 32-bit comput-
ers. This approach, when restricted to e- and s-values less than 1010, requires
no multiple-precision software and can produce new amicable pairs up to about
18 digits long. This approach also lends itself quite readily to parallel processing.
If one makes the Step 1 data file available to several processors (or machines),
one can have each processor (or machine) work on a different range of e-values.

AMICABLE PAIRS OF THE FORM (i, 1) 865

ACKNOWLEDGMENT

I want to thank M. Garcia for his suggestion that I pursue this very profitable
line of investigation.

BIBLIOGRAPHY

1. W. Borho, On Thabit ibn Kurrah 's formula for amicable numbers, Math. Comp. 26 (1972),
571-578.

2. P. J. Costello, Amicable pairs ofEuler'sfirstform, J. Recreational Math. 10 (1978), 183-189.
3. L. Euler, De numeris amicabilibus, Leonardi Euleri Opera Omnia, Ser. I, Vol. 2, Teubner,

Leipzig and Berlin, 1915, pp. 59-61; 86-162.
4. E. B. Escott, Amicable numbers, Scripta Math. 12 (1946), 61-72.
5. E. J. Lee, Amicable numbers and the bilinear diophantine equation, Math. Comp. 22 (1968),

181-187.
6. K. H. Rosen, Elementary number theory, 2nd ed., Addison-Wesley, Reading, Mass., 1988.
7. H. J. J. te Riele, Table of 1869 New Amicable Pairs Generated from 1575 Mother Pairs,

Report NN 27/82, Mathematical Centre, Oct. 1982.

8. , Computation of all the amicable pairs below 1010 , Math. Comp. 47 (1986), 361-368.
9. , On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984),

219-223.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, EASTERN KENTUCKY
UNIVERSITY, RICHMOND, KENTUCKY 40475-3133

