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AMICABLE PAIRS OF THE FORM (i, 1) 

PATRICK COSTELLO 

ABSTRACT. A method is given for finding amicable pairs of a certain type. When 
implemented, thirteen new amicable pairs were discovered. Using methods for 
finding new pairs from known pairs, the thirteen new pairs generated 64 other 
new pairs. 

1. INTRODUCTION 

An amicable pair is a pair of distinct positive integers (a, m) where each 
integer is the sum of the proper divisors of the other. If we let a(x) denote 
the sum of all divisors of x, then saying that (a, m) is an amicable pair is 
equivalent to saying a(a) = a(m) = a + m. 

In the 1700's Leonhard Euler made a systematic study of many of the forms 
that amicable pairs have. He developed several methods for finding pairs and 
used his methods to discover 59 amicable pairs [3]. One particular form that 
Euler discovered was the following: 

(es, ep), 
where s is the product of distinct primes not dividing the common factor e 
and p is a single prime not dividing es. Recently, pairs of this form have been 
labelled as type (i, 1), where i is the number of primes involved in s and 1 
refers to the fact that p is a single prime [8]. It is not difficult to see that i 
must in fact be greater than 1. A good question is, how big can i get? 

The only pairs known prior to Euler were three (2,1) pairs: 

2 2 
(220, 284) = (2 5. 15 1 , 2 .71) (Pythagoras), 

(17296, 18416) =(24 23*47, 2 .1151) (Fermat), 

(9363584, 9437056) = (2 .191 . 383, 2 *.73727) (Descartes). 

Among Euler's pairs were thirteen (2, 1) pairs, including the first known odd 
pairs. In 1946 Edward Escott [4] produced a list of 219 new pairs that contained 
seven (3, 1) pairs. In 1968 Elvin Lee [5] published the list of all known pairs 
to that point, including six (4, 1) pairs that he discovered. In 1982 Herman te 
Riele [7] found the first (5, 1) pair. 
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It is the intent of this paper to show one method for discovering pairs of the 
type (i, 1) and to list some results obtained through a computer implementa- 
tion of this method. 

2. THE ALGORITHM 

Suppose we are searching for an amicable pair of the form (es, ep), where 
p is a prime, s is a product of at least two distinct primes, p does not divide 
s, and p and s are relatively prime to e. Since a is a multiplicative function, 
the condition that a (es) = a(ep) implies that av(s) = av(p) = p + 1. Hence, 
v(s) - 1 must be prime. The condition that o(es) = es + ep implies that 

a(e) _ s+p _ s+o(s)-l 
e a(s) v(s) 

These observations lead to the following two-step algorithm: 

Step 1. Choose a range of s-values. 
For each s 

If s is not prime then 
Calculate a(s) 
If v(s) - 1 is prime then 
Save s and (s + o(s) - 1)/a(s) in a list 

Step 2. Choose a range of e-values. 
For each e 

Calculate o(e)/e 
Search the list created in Step 1 for a match 
If c(e)/e = (s + a(s) - 1)/a(s) then 

If (e and s are relatively prime) and 
(e and v(s) - 1 are relatively prime) then 
Print that es, e(a(s) - 1) is an amicable pair. 

Let us see how this algorithm works on a small example. In Step 1 choose s 
to be odd values ranging from 9 to 99. (See the beginning of ?4 for a reason to 
choose just odd values.) The list of s- and (s + v(s) - 1)/a(s)-values to save is: 
15, 19/12; 21, 13/8; 33, 5/3; 35, 41/24; 51, 61/36; 55,7/4; 57, 17/10; 
63, 83/52; 65,37/21; 85, 16/9; 93, 55/32. When e = 4 in Step 2, we 
would search the list for a(4)/4 = 7/4, which corresponds to s = 55. Since 
4 and 55 are relatively prime, and 4 and 71 are relatively prime, we get the 
Pythagorean pair (220, 284). When e = 819 in Step 2, we get the Euler pair 
(3 2.7 13.5 a17,32 .7 a13. 107). 

Technically, this algorithm will find more than just (i, 1) pairs because s 
was not restricted to be a product of distinct primes. For example, 63 = 32 . 7 
was an s-value that got put into the list, but 63 is not the product of distinct 
primes. If a pair (e * 63, e * 103) were to be discovered, it would be labelled an 
irregular or exotic pair. Such a pair would be marked type X. There are very 
few known exotic pairs that would be produced from this algorithm, but they 
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should not be discounted altogether. If s-values in Step 1 ranged from 5 1 109 
9 2 3 to 6 . 109, we would save s = 17 * 59* 315461. Letting e = 2 . 37 in Step 2, 

we would obtain the known exotic pair 
3 2 3 (2 *37 *17 *59 - 315461, 2 .37 . 5810810039). 

3. COMPUTATIONAL DETAILS 

This algorithm requires that three functions be readily available. First, one 
needs a function that tests if the input to the function is prime or not. If 
the numbers to be tested for primality are not extremely large, a sophisticated 
primality test is not really necessary. Trial division by 2, 3, and every odd 
number after 3 until a divisor is found or the square root of the input is exceeded 
would be a suitable implementation of this function. 

The second function needed is one to calculate the sum of all the divisors 
of the input. Suppose x is the input. A simple way to compute a(x) is to 
initialize s to be 0 and for each divisor d between 1 and v/xt to increment s 
by d + x/d (except when d = +/i). Since this method requires +/xi tests for 
division for every input x, and since the algorithm calls for submitting many 
values to this function, one might want a more efficient implementation. 

The following method is a more efficient method for computing a(x) that 
takes advantage of the multiplicative nature of a, i.e., if x = p apa2 ... par, 

where the pi are distinct primes, then 

a(x) = 
a(plI)a(pr) 

... cr(pAr) 

Initialize s to be 1. Do trial division of x by 2, 3, and odd numbers after 3. 
When a prime divisor p is found, repeatedly divide x by p to determine the 
exact power of p that divides x. At the same time sum up the powers of p 

0 including p . This can be accomplished with the following process: 

powersum 1 

power +- 1 
while p divides x do 

power + power * p 
powersum 4- powersum+power 
X 4- X/p 

endloop 

When the loop is exited, powersum holds the value .(pa), where a is the exact 
power of p that divides x . Multiply this onto the variable s . Since x has been 
reduced by dividing out pa, the next divisor to be found in the trial divisions 
will be a prime. When x becomes 1 or the trial divisor becomes greater than 

x, we exit the function. In the case that x becomes 1, a(x) is in s. In the 
case that the trial divisor is greater than x, a(x) is s times (x + 1) . 
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As an example of how efficient this implementation for calculating a(x) 
is, consider an input of x = 378125. Do trial divisions by 2, 3, and 5 and 
discover that 5 is a divisor. One stays in the loop described above five times 
for p = 5 since 55 divides x. When the loop is exited, s = powersum = 
1 + 5 2+ 53 + 54 + 55 = 3906 and x = 121. Do trial division by 7, 9, and 
11 and discover that 11 is a divisor. One stays in the loop described above two 
times for p = 11 and upon leaving, s = 3906 * ( + 1+1 2) = 519498. Since 
x has become 1, one quits. Note that the last trial division done this way is by 
11 versus doing trial divisions (as suggested in the simple implementation) by 
all integers less than vfx = 614.9. 

The third function the main algorithm needs is a function to compute the 
greatest common divisor of two integers. Step 2 requires this to determine when 
two numbers are relatively prime. This function is most efficiently implemented 
using the Euclidean Algorithm [6]. 

One can separate the two steps of the main algorithm into two separate com- 
puter programs. The program that implements Step 1 should save the list of s- 
and (s + a(s) - 1)/a(s)-values in a data file. This allows for various ranges of 
e-values to be compared with a single range of s-values. 

Because of the internal computer inaccuracies involved in real number com- 
parisons of the form "if a(e)/e = listvalue then... ", it is advantageous to save 
the fractions (s + a(s) - 1)/a(s) as a pair of integers representing the numera- 
tor and denominator. We use the greatest common divisor function to find the 
gcd of s + a(s) - 1 and a(s), say g. Then we actually save the integer pair 
((s+a(s) - 1)/g, a(s)/g). In the program that implements Step 2, we similarly 
reduce a(e)/e to its reduced form, say N/M, and search the data file saved in 
Step 1 for a match with the integer pair (N, M) . In the case of a match, note 
that since a(s), is not really in the data file, it must be recomputed in order to 
test if e and a(s) - 1 are relatively prime. 

It turns out that the data file saved in Step 1 is a large file for any reasonable 
range of s-values. Consequently, doing a linear search of the data file in Step 
2 for each e-value would make the algorithm quite slow. One solution to this 
problem is the following idea. At the beginning of the Step 2 program read in 
the data file saved by Step 1 and store the values in a table by applying a hash 
function to the numerator and denominator pairs. Then as one goes through 
the e-values, a quick check for a match can be done by applying the same hash 
function to the numerator and denominator of the reduced form of a(e)/e. 

4. RESTRICTIONS AND RESULTS 

Restricting s-values in Step 1 to odd integers is based on the conjecture that 
there are no odd-even amicable pairs. (It has been shown that there are no 
odd-even (2,1) pairs [2].) For if s is even and a(s) - 1 is an odd prime, and 
e and s are relatively prime, then e must be odd and so (es, e(a(s) - 1)) is 
an odd-even pair. 
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A program was written in Pascal to implement Step 1 and run on a VAX 
11/785 minicomputer with all odd s-values ranging from 9 to 105. While not 
requiring much computer time, the program used up a lot of disk space to store 
the list of s- and (s + a(s) - 1)/a(s)-values. Just within this particular range 
there are 10360 different s-values to save. In order to discover new amicable 
pairs one needs to find es-values greater than 10 because all amicable pairs 
with smaller integer less than 1010 are known [8]. Consequently, we wanted to 
let s-values get fairly large (at least to 107), but file space limitations (as well as 
main memory limits on the size of the hash table in Step 2) prohibit saving all 
s-values less than 107. It was decided to save only the s-values less than 107 
that contained a numerator <50000 when (s + a(s) - 1)/a(s) was reduced. 

It took approximately 16 hours of CPU time on the VAX to create the data 
file that contains all odd s-values satisfying these restrictions. 

A second program was written in Pascal to implement Step 2 and run piece- 
meal on e-values ranging from 4 to 5. 107. The program utilized the idea of 
applying a hash function to each numerator-denominator pair from the data 
file of Step 1 and storing s and the pair in a table. The program also checks 
for the possibility of several s-values having the same numerator-denominator 
pair when a match with a(e)/e is found. For example, when s is 205, 25705, 
and 35905, one gets the numerator-denominator pair (38, 21). Then e = 5733 
actually matches with three s-values and one obtains three different amicable 
pairs. 

This second program was very fast when the range of e-values was small, 
but slowed down considerably on larger values. To do just the final range of 
e-values chosen, 4.5. 107 < e < 5* 107, the program required nearly 14 hours of 
CPU time on the VAX. While 49 previously known pairs were obtained by this 
second program, twelve new (3,1) pairs and one new (4,1) pair were discovered. 
Their factorizations are listed in Table 1. Notice that pairs 7 and 9 and pairs 
10 and 11 demonstrate the fact that several different e-values can also match 
up with a single s-value. 

In addition, Table 1 lists the number of "daughter" pairs generated by each 
pair. These are new amicable pairs that are found by applying a few clever tricks 
to a known pair and arriving at new pairs that have much in common with the 
known pair. 60 of the daughter pairs were generated using the ideas described 
in [9]. After sending the "mother" and "daughter" pairs to H. te Riele, he was 
able to find the additional four "daughter" pairs using some of his breeding 
programs. 

Pairs 5, 6, and 12 also generate Thabit rules as described by W. Borho in [1]. 
This is an additional method for generating new amicable pairs from known 
pairs that depends heavily on primality testing of large numbers. When H. te 
Riele checked the Thabit rules by testing primality of all terms less than 10100, 
he found that no new pairs were generated . 
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TABLE 1 
New amicable pairs of type (i, 1) 

number of 
type pairs daughter pairs 

2 (3, 1) 3*5 *11 31*7 67*2749 1 
2 3 5 * 11 * 31 * 1495999 

34 5 113 41 * 431 439 13 
34 5.113 . 7983359 

32 2 3 .5 .31 *17 29*61 3 
32 2 3 .5 .31 *33479 
6 36 *5 13' 17* 149* 1637 1 

36 *5 *13 4422599 
2 3 *5 *13 * 463 * 11 * 19 * 6481 1 
2 3. *5 13 X 463 * 1555679 

3.5 * 13 - 199 * 17 - 269 - 397 17 
22 3 .5 * 13 * 199 * 1934279 

4 2 3.*7d11 *23*43 53 919 1 
4 2 34 *711 *23 * 2185919 
4 3.*5 11*503 41 59 2011 5 
4 34 *5* 11 503 * 5070239 

3.7 * 13 23 43 53 919 1 
3.7 * 13 * 23 * 2185919 

33 *5 19 * 37 - 41 ' 73 - 83 * 163 6 
33 .5 19 * 37 - 41 - 1019423 

32 *7*13 19*37 41 73 83.163 6 
32 *7 13 * 19 * 37 - 41 - 1019423 

3 . 5 7 * 419 * 11 * 17 * 11731 4 
3 5 *7 *7419 * 2534111 

(4,1) 3.5 113 7 17 47 1129 5 
34*5 113 7810559 

5. CONCLUSION AND FUTURE WORK 

The nice thing about this approach to discovering new amicable pairs is that 
new pairs can be discovered with single-precision arithmetic on 32-bit comput- 
ers. This approach, when restricted to e- and s-values less than 1010, requires 
no multiple-precision software and can produce new amicable pairs up to about 
18 digits long. This approach also lends itself quite readily to parallel processing. 
If one makes the Step 1 data file available to several processors (or machines), 
one can have each processor (or machine) work on a different range of e-values. 
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